Biocompatibility evaluation of ionic- and photo-crosslinked methacrylated gellan gum hydrogels: in vitro and in vivo study.
نویسندگان
چکیده
In this study, the stability and biocompatibility of methacrylated gellan gum hydrogels, obtained either by ionic- (iGG-MA) or photo-crosslinking (phGG-MA), were evaluated in vitro and in vivo. Size exclusion chromatography analysis of the methacrylated gellan gum (GG-MA) powder revealed that molecular weight is lower as compared to the non-modified material, i.e., low acyl gellan gum. The water uptake and swelling of iGG-MA and phGG-MA hydrogels were investigated in phosphate-buffered saline solution (pH 7.4). The biocompatibility of the hydrogels was firstly evaluated by producing cell-laden hydrogels. The in vitro cells encapsulation study showed that lung fibroblast cells (L929 cells) and human intervertebral disc (hIVD) cells are viable when cultured within both hydrogels, up to 21 days of culturing. The iGG-MA and phGG-MA hydrogels were also subcutaneously implanted in Lewis rats for 10 and 18 days. Tissue response to the hydrogels implantation was determined by histological analysis (haematoxylin-eosin staining). A thin fibrous capsule was observed around the implanted hydrogels. No necrosis, calcification, and acute inflammatory reaction were observed. The results presented in this study demonstrate that iGG-MA and phGG-MA hydrogels are stable in vitro and in vivo, support L929 and hIVD cells' encapsulation and viability, and were found to be well-tolerated and non-toxic in vivo.
منابع مشابه
Rheological and mechanical properties of acellular and cell-laden methacrylated gellan gum hydrogels.
Tissue engineered hydrogels hold great potential as nucleus pulposus substitutes (NP), as they promote intervertebral disc (IVD) regeneration and re-establish its original function. But, the key to their success in future clinical applications greatly depends on its ability to replicate the native 3D micro-environment and circumvent their limitation in terms of mechanical performance. In the pr...
متن کاملModified Gellan Gum hydrogels with tunable physical and mechanical properties.
Gellan Gum (GG) has been recently proposed for tissue engineering applications. GG hydrogels are produced by physical crosslinking methods induced by temperature variation or by the presence of divalent cations. However, physical crosslinking methods may yield hydrogels that become weaker in physiological conditions due to the exchange of divalent cations by monovalent ones. Hence, this work pr...
متن کاملAnti-angiogenic potential of VEGF blocker dendron loaded on to gellan gum hydrogels for tissue engineering applications.
Damage of non-vascularised tissues such as cartilage and cornea can result in healing processes accompanied by a non-physiological angiogenesis. Peptidic aptamers have recently been reported to block the vascular endothelial growth factor (VEGF). However, the therapeutic applications of these aptamers are limited due to their short half-life in vivo. In this work, an enhanced stability and bioa...
متن کاملGellan gum injectable hydrogels for cartilage tissue engineering applications: in vitro studies and preliminary in vivo evaluation.
Gellan gum is a polysaccharide that we have previously proposed for applications in the cartilage tissue engineering field. In this work, gellan gum hydrogels were tested for their ability to be used as injectable systems using simple processing methods, able to deliver and maintain chondrocytes by in situ gelation, and support cell viability and production of extracellular matrix (ECM). Rheolo...
متن کاملRheology and microrheology of a microstructured fluid: The gellan gum case
Particle tracking microrheology is used to study the effect of a constant applied shear during gelation of aqueous gellan gum with a monovalent salt. Shear modifies the gellan gum hydrogel microstructure and the bulk rheological properties of the system, depending on whether shear is applied during gelation or afterwards. The microstructure determines the linear elastic response of the gel, as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced healthcare materials
دوره 2 4 شماره
صفحات -
تاریخ انتشار 2013